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We introduce networks of three-state neurons, where the additional state 
embodies the absence of information. Their dynamical behavior is studied from 
the standpoint of information processing. These networks display strong pattern 
completion capabilities. Moreover, inference naturally occurs between coherent 
patterns. 
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1. I N T R O D U C T I O N  

Connectionist models/1"2~ embody the ideas that emergent properties can 
arise in complex systems from the interaction of many simple elementary 
units and that the distribution of computational power among the units 
entails a great robustness of the whole system. Their popularity in artificial 
intelligencC 3) decreased at the end of the 1960s when Minsky and 
Pappert C4~ brought to light the limitations of elementary models; however, 
a number of important papers ~5 71 on connectionist models still appeared in 
the 1970s. The publication of Hopfield's seminal paper (8~ in 1982 was a 
milestone and marked a revival of these models, which have achieved in 
recent years great favor among physicists under the name of neural 
networks. This interest may be explained in large part by the conjunction 
of such factors as the perception of the ever-growing importance of biologi- 
cal sciences, the recent studies of spin glasses/91 in statistical mechanics and 
the development of optimization methods, (1~ and the growing interest in 
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computer sciences and computationally intensive physics for massively 
parallel systems. ~12 15) 

Most of the models studied by physicists belong to two large classes: 

1. Layered feedforward networks (~6'i7~ whose connections are deter- 
mined via the error backpropagation method, (lal which is a modified 
gradient descent, or more efficient algorithms. (~9/ 

2. Hopfield-like models, 11~176 that is, in their simplest form, 
completely and symmetrically connected networks of binary units. 

Other models, such as Aleksander's Boolean network, ~22~ nonetheless 
represent very interesting alternatives. 

As the system we shall introduce here rather pertains to the second 
category, we shall briefly recall the properties of the Hopfield model which 
may serve as categorizer or associative memory. We shall assume that 
neurons are spinlike (23~ with two states, - 1  and + 1 (Hopfield's neurons 
were bipolar with low state 0(1~ One wants to store a set {~, /x  = 1 ..... p} 
of patterns that may be retrieved from initial conditions corresponding to 
corrupted patterns (due to the basic symmetry S + - ~ - S  the opposite 
patterns - ~ "  will also be stored with equal stability). To this aim, one 
appropriately sets the connections between the N neurons of the network 
using generally the Hebb rule~24): 

1 P 
Co= ~ ~ ~/~ for i=/:j, Cii=O (1.1) 

#=1 

or variants of this rule (25J using, for instance, nonlinear synapses] 26'27) 
Starting from the initial condition, the system then evolves according to the 
following zero-temperature dynamics: 

1. The state Si of the ith neuron changes according to the value of 
the input coming from all the other neurons, 

Si(t + l )=Sign [~ CijSj(t) 1 (1.2) 

2. The neurons may update their state simultaneously (Little's 
dynamics(28'29)), one at a time (as the Hamming distance between two 
successive configurations is then equal to 1, this yields a simple one-flip 
stability criterion) or independently according to a Poissonian process with 
given mean rate (Hopfield's original hypothesis which aimed at crudely 
modelizing delays and low activity in biological neural networks). 

The system finally converges to an asymptotic state (which in the 
useful regime of the network lies near the stored pattern the initial condi- 
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tion resembles most) as proved by the existence of a Liapunov function for 
the dynamics: 

E= c s, sj tl.3) 
i,J 

The very existence of the Liapunov function is related to the symmetry 
S ~ - S  of the spins, the symmetry of the connections, and the absence of 
self-coupling terms Cii. Here E is an energy function for the system, which 
is thus amenable to a thermodynamic study (z~ when synaptic noise is 
taken into account; the updating of neurons is then probabilistic and con- 
trolled by a temperature parameter T. Due to the complete connectedness 
of the network, thermodynamic equilibrium properties are given by a 
mean-field theory. Such a thermodynamic approach is impossible in 
the case of asymmetric connections, which must be studied by purely 
dynamical methods. ~30-33) 

This model shows a great robustness with respect to dilution. ~26"34/On 
the other hand, it suffers from two major drawbacks: 

1. A low storage capacity(3S~: The system cannot store more than 
approximately 0.14N patterns before saturation occurs. (2~'2~) The ability to 
retrieve any pattern then sharply decreases; for a large number of 
prototype patterns (that is, of patterns one wishes to store) the system is 
in a spin-glass phase (the connections have then typically a random 
Gaussian distribution) and the energy landscape shows many local 
minima, most of them not directly related to the prototype patterns. The 
complex structure of this landscape has some ultrametric properties which 
have received much attention in spin-glass physics. (36) The catastrophic 
degradation of the retrieval quality at saturation may be avoided by 
modifying the Hebb rule: Schemes such as marginalist learning or learning 
within bounds enable one to conserve good retrieval properties at the price 
of a still more reduced storage capacity (working memory models(37'38)). 
One may also increase the capacity by using higher order networks, c39'4~ 

2. Great difficulties to store strongly correlated patterns. This 
problem, too, originates in the existence of spurious states which are 
mixtures of the prototype patterns and play an important role in the 
dynamics. One may partly overcome this problem by storing only the 
mutually orthogonal parts of the patterns (projection rule ~4~'42)) or by ade- 
quately preprocessing the data to obtain weakly correlated patterns. One 
may also devise learning schemes that take into account the correlations 
between the prototype patterns (hierarchic memories(43'44)). Appropriate 
models have also been introduced for biased patterns which contain for 
instance, a small number of + I. (2~ Finally, we recall that the effect of 
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these spurious states can be reduced by using some "unlearning" scheme (46) 
or by running the system at finite temperature ~2~ or adopting nonlinear 
synapses. (26'27) 

In Hopfield-like models the use of binary neurons obviously entails 
that all the neurons and all the connections are involved in the storage of 
any pattern. 

Therefore, the Hopfield model does not permit one to deal with situa- 
tions involving partial rather than global information, that is, when only 
part of the neurons or connections play a role in the storage of a pattern 
or in the dynamics of retrieval. This entails serious limitations on the kind 
of patterns one may store or one may feed the network with as initial con- 
ditions: 

1. A pattern cannot involve only part of the network; all neurons 
must contain relevant information with respect to any pattern. 

2. Similarly, the initial condition is defined on the whole network; 
this rules out situations where the initial information is partial, that is, the 
state of part of the network is a priori unknown. 

3. One cannot easily define partial patterns, that is, patterns defined 
on only part of the network. This rules out the possibility of defining a 
pattern as the union of several subpatterns in a natural way. 

These remarks have stimulated the present study. Section 2 is devoted 
to a detailed presentat ion of our model, which is a Hopfield-like network 
of three-state neurons. To the high and low states - 1  and + 1 we add a 
mid-state 0 with given stability threshold. This additional neutral state 
embodies the absence of information and permits us to deal with situations 
where the state of part of the neurons is unknown or irrelevant. It also plays 
an important part in the dynamical behavior of the network, as popula- 
tions of neurons may temporarily switch to 0; this point will be illustrated 
in Section 3 which is devoted to a general discussion of our system's 
behavior. We have already hinted at the fact that Hopfield's standard 
model, though largely motivated by biology, is of course a rather crude 
idealization of the biological situation: The neurons themselves can be 
either inactive (0 state) or active (1 state) like real neurons, but they do not 
display above threshold the frequency coding feature of real neurons/47); 
moreover, the connectedness and symmetry of the network is not realistic 
from a biological standpoint. Our model departs still more from biological 
neurons and we do not aim at any biological relevance. 

With such networks one easily retrieves a pattern starting from an 
incomplete initial condition where part of the information is unknown. This 
will be shown in Section 4. We shall consider there a situation close to 
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Hopfield's original model: We store global patterns which involve the 
whole network. We then study the retrieval properties of the system for two 
different classes of initial conditions: incomplete patterns, that is, with part 
of neurons set to the null state; and corrupted patterns, that is, with the 
same neurons flipped rather than set to 0. We are thus led to distinguish 
between pattern completion and noise correction. 

These networks also allow for the storage of a pattern under the guise 
of overlapping prototype subpatterns of smaller size. The dynamics of small 
overlapping patterns will be studied in Section 5. We shall see that if the 
subpatterns display a sufficient coherence on their overlaps, the network 
shows strong inferential properties: Starting from an initial condition which 
corresponds to only one subpattern, other subpatterns will be finally 
excited. This behavior is controlled by the amount of overlap, the 
coherence on the overlaps, and the value of the stability threshold of the 
null state. 

Our model can deal with missing or partial information and retrieve 
information not contained in the initial condition (inference and pattern 
completion properties). We think that refined models conserving these 
basic capabilities could be of interest in certain pattern recognition 
problems and for connectionist expert systems. This will be further 
discussed in the conclusion. 

J. Yedidia is presently completing an analytical study 148) of this same 
model. He makes use of the method developped by B. Derrida et al. (3~ for 
asymmetric neural networks, which is limited to high dilution rates (to 
avoid any indirect feedback in the network). This study nonetheless yields 
very interesting results which corroborate the results we obtain here for a 
nondiluted network. 

2. T H E  T H R E E - S T A T E  N E U R A L  N E T W O R K  

We consider a network of N three-state ( -  l, 0, and + l) neurons and 
sets of prototype patterns {~,  # = l ..... p} which are randomly generated 
according to the law 

P r o b ( ~ / = ~ ) = P ( - 1 ) 6 ( ~ + I ) + P ( O ) 6 ( ~ ) + P ( 1 ) 6 ( ~ - I )  (2.1) 

P ( - 1 ) ,  P(0), and P(1) are the probabilities to find any randomly chosen 
neuron in a pattern in the state - 1, 0, or 1. We shall call (by analogy with 
functions) the subnetwork Au = {i such that ~ ~ 0} the support of the pat- 
tern ~ and shall denote by N~ = card(Au) the size of that pattern. To store 
the set of patterns { ~  }, we set up the connections using the Hebb learning 
rule (1.1). This choice has been made both for the sake of simplicity and 
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to obtain inference properties stemming from the correlations between 
small patterns (see Section 5). It implies that the storage of a new pattern 
~ does not affect the whole network but only the synapses which connect 
two neurons of A~. This entails the following: 

1. When one stores a finite set of patterns, the dynamics takes place 
on a subnetwork of the original network of average size [1- -P(O)P]N.  

2. Each synapse only carries the information relative to a subset {of 
average size p [ 1 -  P(0)]  2 } of the complete set of patterns. 

3. For  large p, the distribution of coupling constants (i.e., synaptic 
strengths) is Gaussian with standard deviation pl/2[ 1 -  P(O)]/N. Therefore 
the partial connectedness that may appear in our model in certain 
situations just reflect the properties of the set of patterns: small number 
of patterns, small size of the patterns or organization of the patterns in 
disjoint clusters. This is basically different from the partial connectedness 
which is voluntarily imposed in other models, namely: 

4. There are diluted Hopfield models where one randomly destroys a 
fraction of synapses in order to test the robustness of the network. (26"34~ For  
a large number p of stored patterns and for dilution rate c, the distribution 
of coupling constants is then a Gaussian distribution with standard devia- 
tion p~/2/N and total weight 1 - c  on which is superimposed a delta peak 
cg)(Cii). However, the whole network still takes part in the dynamics, even 
for finite p, except for a fraction of average size Nc N 1 which can be dis- 
regarded in the thermodynamic limit. Moreover, the unbroken connections 
still carry information of the whole set of patterns. 

5. There are models with three-level synapses (26~ where weak connec- 
tions are suppressed while the other synapses take the values + 1 or - 1  
according to their sign. In this case, too, one banks on the robustness of 
the standard Hopfield model to obtain a correct behavior of the network, 
and the distribution of synapses features a delta peak at 0 corresponding 
to the connections set to 0. 

We now present the dynamics of our model. The whole network is 
updated at each time step according to the following rule (see Fig. 1). We 
define a threshold U which is the same for all the neurons. If the summed 
input on a neuron from all other neurons in the network strictly exceeds 
U, the new state is + 1; similarly, if the input is smaller than - U, the new 
state is - 1. For  intermediate values of the input the neuron sets to the null 
state 0. We have chosen exactly opposite values for the low and high 
thresholds in order to preserve the symmetry S +-~ - S .  Each pattern is then 
stored together with the reverse pattern and they have equal stability. The 



Three-State Neural Networks 865 

-U 

Output 

1 

0 

-1 

-1" 

I 

I U Input 

Fig. 1. Response function of individual neurons. 

response of individual neurons is embodied in the zero-temperature 
dynamical equation 

s , ( t  + 1) = O E h , ( t )  - u ]  - o [ - / , , t t )  - u ]  (2.2) 

where O(x) is the Heaviside function [with the convention 0 ( 0 ) = 0 ]  and 
where we have introduced the "local field" hi = Z ~ I  CijSj . Alternatively, it 
may be written in terms of the conditional probabilities: 

P(S~(t + 1)=  1; S ( t ) )=O[h , ( t ) -  U] 

P(S,(t + 1) = - 1 ;  S(t)) = O[ - h , ( t )  - U] 

P(Si(t + l ) = 0 ;  S(t))= 1 - O E h i ( t ) -  U ] - O [ - h i ( t  ) -  U] 

(2.3) 

and one performs the probabilistic update of neurons in agreement with the 
conditional probabilities then obtained. The average response of an 
individual neuron then reads 

sh[fih] 1 
ch[flh] + chff lU] ' fl = ~ (2.4) 

We found no conspicuous giapunov function for this dynamics. One can 
nevertheless introduce a noisy dynamics characterized by the "temperature" 
T in the following way: in (2.3) one just replaces O(x) by the smooth 
function 

1 

1 + e x p [ - 2 x / T ]  
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instead of (2.2) in the deterministic case (we recall that in Hopfield's model 
the average response is sigmoidal). For  sheer convenience we shall restrict 
ourselves in what follows to the zero-temperature dynamics (the introduc- 
tion of noise would not affect the basic properties of our model). 

As we shall henceforth heavily rely on numerical simulations, it seems 
appropriate to define now the quantities that we shall use to characterize 
the system's behavior. To avoid large statistical errors in their computa- 
tion, we shall average them over nstat different set of prototype patterns (see 
Section 3). 

To characterize the length of the dynamics, we start from one of the 
patterns ~ and let the system evolve until a stationary state of the 
dynamics is reached after t u steps; the duration of the dynamics is then 
measured by the average over patterns tdy n = < t . ) .  

To characterize the stability of patterns, we use two different sets of 
quantities. The first set is just an extension to the present case of quantities 
used for the standard Hopfield model: 

1. mu is the overlap between the initial condition S (0 )=  ~ and the 
final state S(G): 

] U 

where 6(x, y) = 1 if x = y and 6(x, y) = 0 otherwise. If m~ is barely different 
from 1, the pattern is wellretrieved. 

2. m = ( 1 / p ) Z P = l  m,  is the average of m,, over the set of patterns 
{~"}. It quantifies the global retrieval quality of the network. 

3. The function f (x) ,  x ranging between 0 and 1, gives the fraction 
of patterns for which the quality of retrieval m~ exceeds the given value x. 

In order to characterize the amount of information present in the 
initial condition ~ which can be actually retrieved, we introduce the over- 
lap restricted to the subnetwork A~ of the initial state S (0 )=  ~" and the 
final state S(G): 

m + = _ _ l  ~ b [ ~ f , S , ( G ) ]  
N ,  i Ap 

This quantity does not take into account the evolution of the N - N ~  
neurons that were initially in the null state, m + may be significantly greater 
than rn~ if the restriction of the initial pattern to its support A~ remains 
unaltered but other patterns have been excited during the evolution of the 
system ("inferential regime"; see Section 5). We also define, as we did for 
m, ,  the two average quantities: 
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1. m -+, which is obtained from the m f  by averaging over the set of 
patterns {~}.  

2. f•  which is the mean fraction of patterns such that m f  ~>x. 

Due to the influence of the other patterns, the network does not store, 
unless c~ is small, the prototype pattern ~ ,  but rather a corrupted version 
of it. To quantify this alteration, we use the three following quantities~ 
which, like the quantities we just discussed, are relative to the initial 
information: 

1. 1 - m ~  is the total alteration of the pattern on its support A~. 

2. /7~i p is the proportion of neurons in the restriction of the final state 
to Au which are flipped with respect to the initial condition ~e. 

3. Similarly, nnu n~ is the proportion of neurons on the support Au of 
u ---~ ~' which have set to zero during the evolution (r/null + m f  Jr-r/Kip 1). 

The corresponding mean quantities m-+, nmp, and nnul~ are obtained by 
averaging over the patterns {~"}. 

Finally, we measure as follows the excitation of the pattern r during 
the evolution of the system initially fed with some prototype pattern ~v. We 
first introduce m+~ and ~:~ (similar to + ?/flip m,, and r/Kip) which quantify the 
discrepancy on A,  between the exact pattern {~ and the state resulting 
from the evolution of {". We then define the excitation level e~;v= 

+ ,u;v mu:,--nmp. This quantity ranges between - 1  and + l ;  the value +1 
corresponds to the total excitation of the pattern ~ on its support Au, 
whereas the value - 1  corresponds to the total excitation of the opposite 
pattern. More generally e~;~ quantifies the balance between he excitation 
levels of ~u and the opposite pattern; it will prove useful in Section 5 to 
analyze the inferential properties of the network. 

Before examining its influence on the dynamical behavior of our 
system, we first define an appropriate rescaling of the threshold. Consider 
a pattern ~ of size Nu which does not overlap any other pattern. As the 
summed input to any neuron of A~ is obviously equal to (NF,-- 1)~IV, the 
pattern is perfectly stable provided that U does not exceed the critical 
threshold U* = (N~,-1)/N; otherwise, it immediately decays to the null 
pattern ~o (~o = 0, i =  1 ..... N) which has no information content. Thus, we 
see that for given threshold one cannot retrieve a pattern containing too 
little information (N~ too small) unless it is possibly stabilized by the inter- 
action with the other patterns; if the threshold is too high, the initial infor- 
mation disappears. This control of the amount of initial information 
required for information processing to take place is an interesting feature 
of our model. 

As we shall always store random patterns with a mean number of 
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neutral neurons NP(0), we define the mean critical threshold U * =  
< U * )  = P ( 0 ) - 1 I N .  It is convenient to choose as a parameter of our 
model the rescaled threshold U/U*, which will from now on also be 
denoted by U. 

3. THE D Y N A M I C A L  BEHAVIOR;  THE I N T E R M E D I A T E  CASE 

We now study the main features of our model's behavior. To this end, 
we examine in some detail the typical intermediate case P ( 0 ) = l / 2 ,  
P ( -  1 )=  P ( 1 ) =  1/4; one then stores unbiased patterns with mean size N/2. 
Figure 2a displays the retrieval quality of the network for an intermediate 
value of threshold U =  1/2 (half the mean critical threshold). The 
dependence of both m and m • is qualitatively similar to what is observed 
for the Hopfield-Little standard model (see Fig. 2b): 

1. For  small values of ~ (c~ ~< 0.05 approximately) the patterns inter- 
fere little and the average retrieval quality is optimal (better than 99 %). 

2. The retrieval quality is strongly decreased when c~ is increased past 
this value as a consequence of "collective" effects: The stability of most 
prototype patterns is affected by the "noise" due to the storage of the other 
patterns. 

3. At c ~ 0 . 15  one enters the saturation regime where the average 
retrieval qualities m and m -+ remain nearly constant. 

The critical value of c~ where the retrieval quality drops off is about 
three times smaller in the present case than in the standard Hopfield-Little 
model. It seems therefore appropriate to discuss at this point the "signal to 
noise ratio"(2~ this will shed some light on the influence of P(0) and U on 
the retrieval capacity of our model. Let us consider a specific prototype 
pattern i v and examine its stability. When the system's state is ~v, any 
neuron ~ of the support A, receives in the thermodynamic limit the input 

,Nv 1 ~v 
~ i ' ~ - + ~ ;  2 ~"'~", where ~ . t / = ~  ~ ~jt/j (3,1) 

/2#v j ~ l  

If the pattern ~' has no overlap with the other patterns ( 4 " ' ~ v = 0  for 
# v), the second term vanishes and the stability condition just reads (in 

the thermodynamic limit) 

Nv ~(1-u)>0 
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Fig. 2. Average retrieval quality as a function of the number of patterns stored (c~ = p/N): (a) 
Intermediate case; the retrieval qualities on the whole network (m, solid squares) and on the 
support of the initial condition (m-+, open diamonds) are both displayed. (b) Hoplield-Little 
model; the average retrieval quality m (solid squares) plotted together with the proportion 
f(0.98) of well-retrieved patterns (open diamonds)�9 
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Therefore, if no two patterns did overlap, the criterion for the stability of 
almost all patterns would read 

[1  - P ( 0 ) ] ( 1  - U)  > 0 ( 3 . 2 )  

However, the overlaps between patterns add to the expression (3.1) of the 
input a noiselike term with zero mean (for unbiased prototype patterns) 
and standard deviation 

~1/2[1 -- P(0)]  3/2 (3.3) 

A rough storage criterion for the network is then obtained by considering 
the ratio of the "noise term" (3.2) to the "signal term" (3.3): 

[1 - p(0)]'/2 
7~ ~/2 < 1 

1 - U  

7 is some coefficient which slightly depends on the parameters (P(0), U); 
in the intermediate case ( P ( 0 ) = l / 2 ,  U = l / 2 ) ,  ) ,~3.2, and for the 
Hopfield-Little model ( P ( 0 ) = 0 ,  U = 0 ) ,  722.6 .  Thus, we see that the 
storage capacity is affected by both the threshold value U and the typical 
size of patterns: A higher threshold or a larger size of patterns reduces the 
storage capacity, as could be expected, as they diminish the stability of 
patterns and increase the interferences between patterns. 

On Fig. 3, we examine in more detail the corruption of the prototype 

0.3 

n 

0.2 

0.1 

0,0 
0,0 0.2 0.4 0.6 0.8 .0 

O~ 

Fig. 3. Corruption of the prototype patterns during storage. The average proportions of 
neurons in the support that flip (nnip, solid triangles) or set to zero (nnu~b open triangles) are 
plotted versus c~. 
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patterns (which are perfectly stored for ~ ~< 0.05) due to their interference: 
We plot the average proportion of neurons in the support flipped (nnip) or 
set to zero (nnu u) with respect to the prototype pattern. For 0.05 ~< c~ ~< 0.32 
the perturbation is mainly due to neurons setting to zero (at the peak 
~.~0.15, we have 25% of neurons which have set to zero versus 15% of 
flipped neurons), whereas for higher values of c~ (c~ /> 0.32), flips become 
predominant; in this region the average level of corruption rate l - m  -+ 
remains almost constant (of the order of 60 %). One also observes (see 
Fig. 4) a very good correlation between n~p and the average duration Q~,, 
of the dynamics ( t dyn~350nf l i p  beyond the retrieval regime) which both 
keep increasing for high ~, in contrast with the saturation of m• The 
processing time is thus directly proportional to the "distance" nni p between 
the prototype pattern and the attractor of the dynamics it evolves to. Note 
that the three different regimes of the network clearly stand out on all these 
c:urves: individual regime (perfect retrieval, t d y n ~  1), transition regime 
(sharp drop of the retrieval quality, strong dependence on c~ of tdy n and 
nnip), and saturation regime (constant retrieval quality, weak dependence of 
/'d3,n and Y/flip o n  ~), 

The dynamical properties of the system strongly depend on the 
threshold U. A higher threshold decreases the stability of patterns and 
limits inference, as will be shown in Section 5. However, more subtle 
dynamical effects also take place (see Fig. 5). Let us consider, for example, 
the storage of a small set (c~=p/N=0.05) of patterns. The best retrieval 

tO0 

t dyn 

80 

60 

40 

20 

O - -  ~ I I I I 
0.0 0 .2  0 .4  ~ 0 .6  0 .8  

0,2 

Fig. 4. Average length of the dynamics tdy . (solid triangles) versus ~ in the intermediate case. 
Observe the strong correlation with nn, p (open triangles) in the saturated regime. 
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Fig. 5. Dependence of the average retrieval qualities on the whole network (m, solid tri- 
angles) and on the support  of the initial condition (m e, open diamonds)  on the threshold U 
in the intermediate case for ~ = 0.05. 

quality is achieved for U g 1/2. This may be explained as follows. During 
the evolution of the network, some neurons are submitted to conflicting 
influences, which leads to a small input value. If this input is below 
threshold, the neurons set to zero, which cancels most of the frustration 
present in the current state of the network. This population then plays tem- 
porarily no role into the dynamics and enters again into play only later 
after the remaining "coherent" part of the network has further evolved. 
This subtle dynamical effect enhances the quality of retrieval of any 
prototype pattern by reducing the "noise" due to the other patterns. It is 
observed for intermediate values of the threshold (U ~ 0.5) and is limited 
to situations of low storage where no inference takes place: For  the chosen 
values of the parameters, the best retrieval is obtained for U = 0 as soon as 
c~0 . 08  and no local enhancement of the retrieval quality at U=0 .5  is 
observed for e > 0.11. We think nevertheless that this effect deserves atten- 
tion as a striking illustration of the positive effects that the introduction of 
a neutral state may entail. 

The present work is essentially numerical. Therefore we have paid 
attention to both finite-size effects and statistical effects, as will now be dis- 
cussed. We have also compared the influence of such effects on our system 
to the influence they have on the Hopfield-Little model. Figure 6 clearly 
shows that the retrieval quality depends very little on the number nstat of 
sets of prototype patterns in our statistical sample (here c~ = 0.2; for other 
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Fig. 6. Average retrieval quality m (solid squares) as a function of the size ns~at of the statisti- 
cal sample: (a) Hopfield-Little model, c~=0.2. (b) Intermediate case, c~=0.1. The average 
retrieval quality of the initial information m e (open diamonds) is also plotted. 
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m • is also plotted (open diamonds).  



Three-State Neural Networks 875 

values of c~, statistical effects were still lower); therefore, we have always 
chosen r/stat = 16 throughout our study. Figure 7 displays the dependence of 
the retrieval quality on the size of the network. In the case of the Hopfield 
standard model the number of neurons has no significant influence as long 
as saturation (~ =0.14) is not reached. In the transition region where the 
retrieval quality drops off, we observe much stronger size effects, which 
nonetheless never exceeds 11%. They diminish for higher values of c~, but 
remain at a level of about 3 % in the saturation regime (spin-glass phase). 
Our model displays the same general behavior: Size effects are negligible in 
the individual regime and peak in the transition region, where they reach 
2O%. In the present study we have always considered networks of 200 
neurons for the following reasons: 

1. This allows for quick numerical computations on the SCS40 and 
VP200 vector computers we used. 

2. Much larger networks (more than 1000 neurons) are not 
amenable to study, as the processing time of the programs we used grows 
as N 3 or N 4. 

3. Finite-size effects are important only for intermediate values ofc~. 

4. We are more interested in understanding the qualitative behavior 
of our system than obtaining precise quantitative results. 

,4. P A T T E R N  C O M P L E T I O N  

We now study the pattern completion properties of our network in the 
"'Hopfield-like" limit where P(0) = 0 (the size of almost every pattern is N) 
and the threshold U is weak; U =  0 corresponds to the standard Hopfield 
model. The question of how large the threshold can be chosen in that limit 
is answered by examining the dependence on U of the retrieval quality in 
the retrieval regime (typically ~ ~< 0.14). The results are displayed on Fig. 8. 
For low values of the threshold (typically U~<0.2) the retrieval remains 
almost perfect ( m ~  1). As U is further increased, the average retrieval 
quality steadily decreases and it finally vanishes for U~0.9.  The behavior 
of the average proportion of flips nmv between the initial and final states is 
quite different, as it presents a maximum (nnip~0.15) for U=0.5.  These 
features stem from the following fact: For high values of U a large propor- 
tion of the initial states decay to the null state ~o and therefore the average 
alteration of the prototype patterns during the dynamics mainly comes 
from neurons setting to the state 0. Actually, for U ~> 0.9 all patterns evolve 
to the null state and both m and nnl p vanish. In view of these results we 
chose for the scaled threshold throughout the present analysis the value 
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Fig. 8. Dependence on the threshold U of the retrieval quality in the Hopfield-like limit, The 
average retrieval quality (m, solid squares) and the average proportion of flips with respect to 
the prototype patterns (nnm, open triangles) are plotted versus U. Here e = 0.1. 

U-0 .1 ,  which does not significantly degrade the retrieval quality with 
respect to the standard Hopfield-Little model while enabling the specific 
properties of our model to play an important role. 

As already mentioned in the introduction, we consider two very 
:lifferent situations: 

1. Pattern completion. The initial conditions are then derived from 
the prototype patterns ~" by setting to the null state 0 a fraction Xmo d of 
Lhe neurons in the support. 

2. Retrieval of prototype patterns from noisy initial conditions, that 
Ls, correction of noisy patterns. These initial conditions are obtained by 
~lipping part of the neurons. 

These two cases are compared on Figs. 9a and 9b, which respectively 
correspond to the retrieval regime (~=0.1) and the transition regime 
(e = 0,2) of the Hopfield-Little model. To obtain these results we randomly 
chose XmodN neurons for each prototype pattern ~", either flipped or set to 
0 these neurons depending on the case, and computed the overlap rn~ on 
the whole network between the final state resulting from the evolution of 
the initial condition thus obtained and ~ .  We then averaged rn~ over the 
%tat sets of patterns {~u} (but not on the symmetric counterparts - ~ )  to 
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regime ~ = 0.2. 



878 Meunier  et  al. 

obtain m. Here the meaning of the quantities m~ and m is slightly different 
from what it is in the other sections, as the initial condition is an altered 
version of a stored pattern; however, no confusion should arise. 

In the retrieval regime (see Fig. 9a), pattern completion is excellent 
even if the initial condition is only a small part of the prototype pattern; 
more than 90 % of the pattern is recovered as long as the initial condition 
contains more than 15 % of the information relative to that pattern, This 
strikingly illustrates the redundancy of storage in neural networks. For 
smaller initial information content the retrieval quality sharply drops off to 
0 as most initial conditions evolve to the null state 4 ~ In contrast, the 
retrieval quality is much lower if one starts from a noisy pattern: It 
becomes lower than 90% when 35% of the prototype pattern is flipped 
and vanishes when 85 % of the neurons are flipped. This difference can be 
explained as follows: For  a noisy initial condition one is faced with a 
mixture of the pattern with the opposite pattern and one cannot expect a 
good retrieval quality when a 50% mixture is approached. On the other 
hand, a partial initial condition contains only information relative to the 
pattern itself, which enhances the retrieval quality. Note that the symmetry 
of the curve corresponding to noisy initial conditions with respect to the 
point (0.5, 0.5) also stems from the basic symmetry S,-~ - S  of the system. 
The proportion of perfectly retrieved patterns (retrieval quality better than 
98%) is plotted on Fig. m in both situations. As expected, no pattern is 
perfectly retrieved from a noisy initial condition when the alteration level 
Xmod exceeds 50%; on the other hand, 90% of the patterns are well 
retrieved as long as the initial condition contains at least 50 % of the total 
information on the prototype pattern. 

In the transition regime, the behavior of the network is globally 
similar to what it was in the previous case. However, the decay of the 
retrieval quality when Xmod is increased is faster. Note also that for very 
noisy initial conditions the retrieval quality no longer vanishes; this, 
together with the imperfect storage of the prototype patterns (m ~ 0.8 for 
Xmod = 0), is obviously due to the presence of spurious attractors. 

Thus we see that the use of three-state neurons enables us to achieve 
true pattern completion, that is, retrieval of prototype patterns starting 
from only part of the information. The capability of our network to per- 
form such a task is clear especially in the storage regime of the network 
and is substantially higher than the ability to eliminate noise superimposed 
on a prototype pattern. It degrades abruptly when the initial information 
becomes too small, as most initial conditions then decay to the null 
pattern. The quality of pattern completion of course depends on the 
storage level ~ in the network and the exact value of the threshold U. 
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5. THE INFERENTIAL PROPERTIES 

The present section is devoted to the inferential properties of our 
network, that is, to the excitation of prototype patterns (or their symmetric 
counterparts) during the dynamics, starting from one of the stored patterns 
as initial condition. As we shall see, such a behavior occurs when small 
patterns are stored, whereas for large patterns the behavior is rather similar 
to the behavior of the Hopfield model. This originates in the nature of the 
spurious states, which in the former case mainly consists in "mergings" of 
small patterns, as will be further explained below. Such spurious attractors 
will play here a quite positive role, as they will enable us to store implicitly 
in the network a pattern as the union of several prototype patterns. 

Though it is not a sufficient condition (as exemplified by the Hopfield 
model, where the retrieval of the prototype patterns degrades only for large 
enough ~), a collective dynamics of patterns requires the supports of the 
patterns to overlap. This requirement is easily met. Indeed, when P(0)> 0, 
two randomly chosen patterns overlap with probability 1 in the ther- 
modynamic limit: For two patterns with respective size ( 1 - c ) N  and 
(1 - c ' ) N  the probability P(c, c') that they do not overlap behaves for large 
N as 
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( 1  - -  C)  N(1 - - c ) +  1/'2 ( l  - -  C ' )  N(1 C') + 1/2 

P(C,C')= (I__c__c,)Nfl-; c')+1/2 for c + c ' ~ l  

P(c,c')=O for c + c ' > l  

It tends to 0 when N goes to infinity except when c = c' = O, a situation that 
almost never occurs. Even if the prototype patterns have finite support with 
probability 1, they do overlap in the thermodynamic limit if their number 
grows fast enough, as shown by the following percolationlike argument. 
Indeed, consider a network of N neurons and p prototype patterns with 
same finite size n (for simplicity). The probability P for two randomly 
chosen patterns to overlap then reads 

, , = 1  

and behaves in the thermodynamic limit as n2/N. Consider the p prototype 
patterns as p sites, any two of them being connected with probability P (a 
link corresponds to the existence of an overlap). The mean number of 
chains (without loops) of overlapping patterns connecting i and i' is then 

k - - 2  k - - 1  
F/chains ~ Ap_2P 

k = 2  

9 As P = n-/N, the quantity nchains vanishes in the thermodynamic limit if p 
is finite, as could be expected. On the other hand, if p scales like N, we 
have 

nchains = exp(1/P) n! P " -  1 

Using Stirling's formula, we see that nchains grows without bound when 
N ~ ~ provided that p > N/n ~- and vanishes if this condition is not fulfilled. 
Fhis means that with probability 1, randomly chosen patterns do not over- 
lap if p < N/n 2 and that, on the contrary, an infinite cluster of overlapping 
patterns exists in the thermodynamic limit when p > N/n 2. Actually, one 
:ould expect the transition to occur for Pp = 1 in such a mean-field theory, 
as Pp is the average number of patterns overlapping with any given 
pattern. 

Even with overlapping patterns, the appearance of an inferential 
behavior depends on the size of the overlaps, the threshold value, and the 
%oherence" of the patterns on their overlaps. Before analyzing the 
behavior of our model, let us examine the influence of these three factors 
in the very simple case of two overlapping patterns ~A and ~B with respec- 
tive supports A and B and same size n. To quantify the size of the overlap, 
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we introduce the overlap ratio r, which is the ratio of the number of 
neurons in the overlap to the common size n of the patterns. The connec- 
tion matrix then reads 

1 [Y-A.~A B B 

C i / = n ( 2 _ r )  ~ i  ~j + ~i ~., ) 

Table I and Fig. 11 display in the thermodynamic limit n-+ oo the input 
level as a function of the overlap ratio r for the three different groups of 
neurons A c~ B, A -  B, and B - A  and for the three different initial condi- 
tions ~A<B, {A--B, and ~A, assuming a perfect coherence of the two 
patterns A and B on their overlap A c~B; {a~,~ is the restriction of Ca to 
A n B and ~A - B its restriction to the set A - B. By complete coherence we 
mean that the two prototype patterns ~A and ~ coincide perfectly on 
AraB; ~.ff=~B for i in Ac~B. We see that for U < l / 2  the pattern ~a is 
retrieved for all overlap ratios (see Fig. l la). On the contrary, inference 
may take place, that is, the whole pattern ~B be excited, only if r is high 
enough. Notice also the effect of coherent overlap (all input levels grow 
with r). When the initial condition is {A-~ (see Fig. l lb), inference never 
occurs; this could be expected, as the initial condition ~A-8 contains no 
information on the pattern ~ .  In addition, the larger r is, the lower must 
U be chosen in order to ensure the stability of {A as the size of the initial 
condition, that is, the amount of initial information on the pattern, 
decreases with growing r. Finally, if the initial condition is r (see 
Fig. 1 lc) we remark that the input level for the neurons of A m B is twice 
the level for the neurons of A • B as a consequence, loosely speaking, of 
the double storage of the subpattern {.4~ B. 

Table I. Excitation Levels of the Neurons in the Three Groups A - B ,  A n B, 
and B - A  for the Three Di f ferent  Initial Conditions t~ A, ~A~ B, and { A - e  

in a Situation Where  T w o  Pa t te rns  A and B Ove r l ap  a 

N e u r o n s  N e u r o n s  N e u r o n s  

Init ial  c o n d i t i o n  A - B A c~ B B - A 

_~a 1/(2 - r)  ( 1 + r ) / (2  - -  r )  r / ( 2  - -  r )  t. ,  

l / (2  - r )  1/(2 - r)  0 

~ A  - -  B ~, (1  - r ) / ( 2  - -  r )  (1  - r ) / ( 2  - r }  0 

(1 - r ) / (2  - r)  (1 - r ) / ( 2  - r )  0 

~A ~,B r / ( 2  - -  r )  2r / (2  - -  r )  r / ( 2  - -  r )  

0 r/(  2 --  r )  0 

a The  exc i t a t ion  levels a re  given as func t i ons  of  the ove r l ap  r a t io  r; the  u p p e r  express ion  

c o r r e s p o n d s  to perfect  cohe rence ,  the  lower  express ion  to to ta l  incoherence .  
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Fig, 11. Input level for the neurons of the three groups Ac~B, A--B,  and B - A  as a 
function of the overlap ratio of the patterns ~A and ~B for three different initial conditions. 
Perfect coherence is assumed: (a) Initial condition ~A (b) Initial condition ~4 8. (c) Initial 
condition i n ~ B. 
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Fig. I1 (continued) 

In the opposite case where the patterns ~A and ~e display no 
coherence on their overlap, that is, when there is no correlation between 
the states of the neurons of the prototype patterns ~A and ~B in their over- 
lapping part A c~ B, the results are quite different (see Table I): Inference 
never takes place and the neurons of A all receive the same input, whether 
they belong to A ~ B or A - B. Thus, this simple example clearly illustrates 
some of the basic prerequisites for inference to occur: low threshold, large 
overlap, and high coherence. 

We shall now study the inferential properties of our model. Before 
investigating the case where small patterns are stored, we first discuss 
briefly the intermediate case presented in Section 3. In the saturation 
regime, m 20 .4  and in -+ 2-__0.6 (see Fig. 2a). This means that about 80% of 
the neurons outside the support of the initial condition leave the null state 
during the system's evolution, while about 40 % of the initial information 
is altered in the same time. The system thus displays two unwelcome 
features from the standpoint of inference: (1)Excitaton of neurons outside 
the support of the initial condition is not hindered by the lack of coherence 
between prototype patterns. (2) Most initial conditions are badly preserved 
(m • significantly differs from 1). 

To further emphasize this point, we have plotted on Fig. 12 the 
proportion of well-retrieved patterns (retrieval quality better than 98 %) 
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Fig. 12. Average proportion of well-retrieved patterns versus ~. The graphs of f(0.98) 
(retrieval quality on the whole network; solid squares) and f• (retrieval limited to the 
support; open diamonds) are perfectly superimposed. 

taking into account either the whole network ( f )  or just the support of the 
initial condition (f-+). The two curves are perfectly superimposed. This 
proves that the initial information is well retained only for those prototype 
patterns which do not excite any other pattern during the system's evolu- 
tion: Preservation of the initial information cannot be achieved if inference 
takes place. 

On the contrary, when small patterns are stored, the initial informa- 
tion is well preserved while the patterns which have a coherent overlap are 
excited. This is illustrated by the following analysis [where P(0)=  0.9, that 
is, the average size of patterns is N/10]. 

Consider first small patterns with a perfectly coherent overlap (a situa- 
tion which should also be amenable to an analytic study). To achieve such 
a coherence of the prototype patterns we randomly dhoose them according 
to (2.1) with P ( - 1 ) = 0 ,  P (0) -0 .9 ,  and P(1)=0.1;  then ~,."=1 on the 
support Au of the pattern i v. The behavior of the system is displayed on 
Fig. 13: When c~ is increased, m -+ remains close to 1, whereas m sharply 
drops off. This means that the initial condition is almost wholly retained 
while many neurons not belonging to its support are excited. Notice also 
that the retrieval quality on the support m • is slightly improved when ct is 
increased as a consequence of the coherent overlap of patterns which 
increases their effective storage weight. 
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Fig. 13. Dependence on c~ of the average retrieval qualities m (solid squares) and m e (open 
diamonds)  in the case where small patterns [ P ( 0 ) =  0.9] are stored. 

Figure 14 displays the histograms of excitation levels e,;~. for a typical 
(randomly chosen) set of patterns {r When c~ is small (Fig. 14a) the 
prototype patterns are stable: The initial information is perfectly preserved 
during the dynamics (e~;~ = 1 ), but no significant inference takes place (the 
excitation levels eu:v, v r are small and just correspond to the overlaps 
of patterns). The situation is quite different for higher e (Fig. 14b): Excita- 
tion levels are high and the category e,;~ = 1 regroups most of them (few 
intermediate values are observed). This proves that when the average over- 
lap is large enough, most prototype patterns are no longer stable and other 
patterns are wholly excited during the system's evolution. We have also 
noticed that if the information initially present in the pattern ~" is not con- 
served (e,:~-= 0), then this pattern decays to the null state 4 ~ and does not 
excite any other prototype patterns during its evolution; however, it can 
be excited during the evolution of another pattern ~v (eu:~r More 
generally, the fact that a pattern ~u is excited during the evolution of the 
initial condition r does not entail that the pattern g~ is excited during the 
,evolution of ~ (e~:,.:r e~:~); this stems from the basic asymmetry of the 
,dynamics of patterns. It seems now appropriate to discuss the nature of the 
spurious states. In the Hopfield-Little model the retrieval quality degrades 
for high ct as spurious states originating in the similarity between prototype 
patterns become attractors of the dynamics. These unwanted spurious 
states, which limit the system's storage capacity, are mixtures of prototype 
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excitation level 
(a) 

excitation level 

(b) 
Fig. 14. Histograms of the excitation levels e,;~ in a situation of perfect coherence. For each 
initial condition ~ ,  we computed the excitation level e~;~, of the pattern ~ '  at the end of the 
system's evolution. We then classified the (~N) 2 excitation levels thus obtained in several 
categories and plotted for each category the proportion of e,;v in that category. Each category 
corresponds to an interval of width 0.l centered on the value indicated, except the categories 
e.;,, ~ 0 and e~,;,, = 1: (a) ~ 20.025 (retrieval regime). (b) a = 0.135 (inferential regime). 
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e x c i t a t i o n  level  
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Fig. 15. Histograms of the excitation levels e.:~ for ~=0.075 and two different levels of 
coherence: (a)Total incoherence, P ( -  1 )=  P(1 ). (b)Total coherence, P ( -  1 )=  0. 
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patterns. (2~ The same phenomenon is observed in the intermediate 
case we discussed above. On the other hand, when one stores small 
coherent patterns, the "spurious" attractors consist in mergings of overlap- 
ping patterns: the "typical" spurious state ~, which originates in the 
coherent overlap of the prototype patterns ~"',..., ~,r, has support A = 
U A~j, j = 1,..., r, and is defined by ~i = ~ for j = 1,..., r and i in At, j. Such 
spurious attractors, which actually exist as long as the coherence between 
patterns is strong, as will be shown below, thus play a positive role in our 
system's behavior, since they are responsible for the inferential properties. 

We now examine the dependence of the inferential properties on 
the coherence between the prototype patterns. Figure 15 displays the 
histograms of excitation levels in a typical (randomly chosen) situation. 
Apart from the category e~;~--- 1, which corresponds to the conservation of 
the initial information during the dynamics, all the excitation levels are 
roughly symmetrically distributed around 0 in the incoherent case (see 
Fig. 15a); no inference takes place and one just observes overlap effects. 
The negative values of e~:v corresponds to slight excitations by overlap 
effects of the symmetric counterparts { - ~ " }  of the prototype patterns 
{~}.  On the other hand, when coherence is perfect, about 50% of the 
excitation levels fall into the category e~;v = 1, which is the sign of strong 
inference; note also that quite naturally only the prototype patterns are 
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Fig. 17. Dependence of the average retrieval qualities m (solid squares) and m -+ (open 
diamonds) on the level of coherence [P(1)-P(-1)]/[P(1)+P(-1)]: (a) c~=0.075, 
(b) e = 0.225. 
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excitation level 

(a) 

Fig. 18. 

excitation level 
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Histograms of excitation levels for ct = 0.075, perfect coherence, and two different 
values of the threshold: (a) U =  0.25, (b) U - 0 . 7 5 .  
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excited and not their symmetric counterparts (the excitation levels are 
never negative). In fact, inference requires a strong coherence of the pat- 
terns. We see on Fig. 16, where the mean (]eJ)  = 1/(c~N) 2 ~ leu:vl of the 
]e~:J has been plotted as a function of the coherence level {which is 
measured by the quantity [P(1) - P ( -  1)]/[P(1 ) + P ( -  1 )] } that inference 
remains weak as long as the coherence level does not exceed 80% and 
sharply increases beyond this value. The retrieval qualities clearly display 
the same behavior (see Fig. 17). For values of c~ corresponding to the 
retrieval regime of the incoherent case (see Fig. 17a) the average retrieval 
quality remains quite constant (no inference) for coherence levels lower 
than 50% and then sharply drops off (inference); on the other hand, the 
initial information is always well retained and its stability even improves at 
high coherence levels. When ~ is increased, that is, for values which 
correspond to the beginning of the saturation regime in the incoherent case 
(see Fig. 17b), the behavior remains qualitatively similar; however, the 
decrease of m is much smoother and inference appears more gradually than 
before. Notice here the conspicuous improvement in the stability of the 
initial information at high levels of coherence. 

We now consider the last factor that affects the inferential properties: 
the value of the threshold. As expected, the higher the threshold, the more 
inference is inhibited, as illustrated by Figs. 18a and 18b, which display two 
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Fig 19. Average value ( e )  = 1/(~N) 2 Y' e,~;~ of the excitation levels e**:,, as a function of the 
threshold U in a situation of perfect coherence; here ~ = 0.075. 
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cases of perfect coherence differing just by the value of the threshold. As 
shown by Figs. 19 and 20, the effect of the threshold is more gradual than 
was the effect of coherence. Moreover, if a high threshold inhibits inference 
as did a low coherence, it also drastically affects the stability of the initial 
information (see Fig. 20). Finally, we display on Fig. 21 the average 
retrieval qualities as a function of c~: Notice that for low threshold 
(Fig. 21a) inference occurs even for small average overlap of the prototype 
patterns. 

Thus, we see that our three-state neuron network displays interesting 
inferential properties when small patterns are stored: The information con- 
tained in the initial condition (one of the prototype patterns in our study) 
is preserved during the system's evolution, but new information, not pre- 
sent in the initial condition, may be brought to light if it has a high level 
of coherence with the information initially present. Moreover, the inference, 
which originates in the positive role played here by the spurious states, 
may be controlled to some extent by the value of the threshold. 
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Fig. 20. Dependence on the threshold U of the average retrieval qualities m (solid squares) 
and m • (open diamonds) for ~ = 0.075 and a perfect coherence between patterns. 
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Fig. 21. Variations with ~ of the average retrieval qualities m (solid squares) and m -+ (open 
diamonds)  for perfect coherence [ P ( - 1 ) = 0 ]  for two different values of the threshold: 
(a) Low threshold U = 0.25. (b) High threshold U =  0.75, 
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6. C O N C L U S I O N :  THE I N F O R M A T I O N  P R O C E S S I N G  
CAPABIL IT IES 

In this section we summarize the information processing capabilities of 
our network and discuss their possible interest in certain AI problems. Let 
us recall that connectionist architectures have already been used in the 
representation of knowledge (knowledge networks), in natural language 
understanding (word disambiguation), vision research] s~ and expert 
systems. (51~ From the standpoint of information processing the basic 
features of our model may be described as follows: 

1. Each neuron corresponds to an elementary fact which can be true 
(+1),  false ( - 1 ) ,  or undefined (0). The third state, 0, embodies the 
irrelevance of the elementary fact in a given context as well as the absence 
of significant evidence on its truth or falsehood (trivalued logic). The whole 
network may be thought of as the universe of all the elementary facts 
pertaining to the description of a given problem. 

2. A prototype pattern is a group of mutually correlated facts. 
Generally it contains information relative to only part of the network. One 
may think of the patterns as factual statements, categories, rules, or 
fragments of a picture. The term rule should be used here with caution, as 
causality is implicit rather than explicit; however, such is often the case 
when one derives empirical rules from the observations of past associations 
of facts (in many situations of medical diagnostics, for instance). 

3. The interrelationship among neurons is specified by the connec- 
tion matrix C, which indicates the correlation between any two elementary 
facts: if Cij--- 0, the facts i and j are not directly related; if C o > 0, they are 
correlated (the correlation being proportional to the magnitude of Cu), 
whereas they are anticorrelated for C~j< 0. The connection matrix is con- 
structed from the prototype patterns, that is, from the patterns or rules 
initially prescribed. Once the connections are specified, the network 
becomes the analog of a base of knowledge. Notice that due to the sym- 
metry S ~ - S ,  which gives naturally symmetric roles to the logical values 
"true" and "false," the knowledge base contains with each category ~ its 
opposite counterpart - ~ .  

4. Information processing occurs during the system's evolution: 
Starting from some (partial) initial information, the system evolves during 
successive cycles, extracting new information (transition of neurons from 0 
to +_ 1 between the initial and final states). During this process some initial 
facts (neurons initially in the + 1 or - l  states) may set to the undefined 
state 0 if they are not supported by enough additional evidence or even flip 
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if they prove in contradiction with the context [i.e., the current state S(t) 
of the network].  

Let us discuss more fully this dynamical behavior, which is somehow 
analogous to the processing of data by an inference engine in a classical 
expert system. The prescriptions for the dynamics are extremely simple in 
the present case. No explicit selection of rules, activation of rules, or con- 
flict resolution strategy is required; the complex dynamical behavior just 
appears as an emergent property of the system grounded on the response 
fimction of elementary neurons. This response function may be rephrased 
as follows: any neuron changes its state so as to fit a best in the context 
and adopt the undefined state 0 in case of ambiguity. This is done by 
updating the state of the elementary neuron depending on the information 
it receives from the neurons to which it is directly connected. The neuron 
sets to the null state 0 if the input is low (with respect to the threshold U), 
that is, if it receives information from too few neurons or it receives con- 
tradictory information. If it receives a large and meaningful information 
from the other neurons, it sets to a nonzero state. The threshold U thus 
appears as a certainty criterion: It is the minimal amount of external 
evidence which must be supplied to assign a definite logical value to the 
basic fact one considers. 

Before turning to the possible practical interest of such networks, we 
would also like to emphasize the two following points: 

1. The processing of information is simple and meaningful, as was 
illustrated above by the response function of individual neurons. Let us 
give another example to support this assertion: the evolution of an initial 
condition corresponding to part of a prototype pattern. If the initial condi- 
tion contains little information or the threshold is too high~ the system 
evolves to the null state 4% This stable null state d ~ corresponds to a total 
lack of information. Such a situation is highly desirable: the system does 
not validate the initial information if it is too uncertain to lead to a signifi- 
cant conclusion. If the initial information content is higher, the whole 
prototype pattern will be recovered. Finally, if it overlaps other patterns, 
inference will take place, for small prototype patterns, provided that the 
coherence of the prototype patterns is sufficient. This is reasonable, as no 
inference effects should ever occur between uncorrelated bodies of data. 
That inferential behavior appears when the number of prototype patterns 
and the coherence are increased via what we could perhaps call with great 
caution a percolative transition (see Section 5). 

2. The system's dynamics is highly parallel: All neurons are updated 
synchronously (Little dynamics), that is, all facts are examined at the same 
time; many patterns may become activated during the same dynamical 
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cycle. This feature is one of the strong points of connectionist systems, as 
it allows for a quick processing of large bodies of data, and can be 
opposed, for instance, to the sequential activation of rules in classical 
expert systems. 

We now discuss some possible applications of such three-state 
networks, beginning with the image processing capabilities. The analysis of 
Section4 shows that an entire prototype pattern can be retrieved even 
if the initial condition contains no more than 15% of the information 
relative to that pattern. This strong pattern completion capability does not 
impair the ability to retrieve a prototype pattern from a noisy version, 
which is similar to that of the Hopfield network. In addition, the analysis 
of the system's dynamics when small overlapping patterns are initially 
stored suggests an interesting possibility: the implicit storage of a pattern 
stemming from the coherent overlap of prototype subpatterns. Suppose one 
wants to retrieve a given collection of large patterns. One can consider each 
pattern as the merging of small subpatterns with coherent overlap, the 
same subpattern being possibly part of several large patterns. If the set of 
subpatterns which are stored is adequately chosen, one can hope to retrieve 
entirely any given pattern by feeding the network with any meaningful 
initial condition. Such an initial condition could, for instance, be made of 
one subpattern belonging to that pattern and possibly to some other 
patterns together with some additional information on subpatterns specific 
to the pattern to be retrieved. Of course, the correct implementation of this 
idea would require more sophisticated schemes than the basic network we 
present here. 

That inferential behavior could also be of interest for connectionist 
expert systems. In the framework of zero-order logic, each prototype 
pattern corresponds to a rule. Starting from some initial condition (some 
initial body of data), new information is brought to light as successive rules 
are activated during the system dynamics until the system reaches a 
stationary state. A few comments on the network's behavior in such a 
framework are now necessary: 

1. We have seen in Section 4 that generally whole patterns are 
excited during the inference process; this allows us to speak of rules being 
activated. 

2. Each dynamical cycle corresponds to the processing of a given 
body of data and the activation of the relevant rules. These rules are 
activated at the same time and not sequentially (parallelism of the 
dynamics). 

3. The infomation processing displays many welcome features: for 
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instance, the system does not conclude if the initial body of data is too 
small or contradictory (see above). 

4. The logical value of an elementary information may sometimes 
change several times during the processing, as the current context [the 
state S(t)  of the network] evolves, before finally stabilizing; this, together 
with the existence of the validation threshold U, avoids the appearance of 
inner contradictions in the body of data during the processing. 

5. The system is not limited to one peculiar type of inference: back- 
ward as well as forward or mixed inference can take place within the 
network. 

6. Our system naturally involves two different hierarchical levels in 
the inferential regime: the basic set of subpatterns which are known a priori 
and the implicitly stored patterns (spurious attractors which are naturally 
obtained via the inference process. 

7. It displays strong robustness properties as is usual with neural 
networks. The information processing capabilities gracefully degrade when 
one adds to the base of knowledge some rules which contradict the other 
rules and thus decrease the coherence of the system. In addition, some 
inner contradictions can be present in the initial condition; the system will 
then quickly set the corresponding part of the data to the undefined state 
0 and process the remainder of the initial data. These are strong points 
when compared to the brittleness problems faced by many classical expert 
systems. 

8. The high speed of processing due to the parallelism might make 
neural expert systems better suited than classical expert systems to the 
real-time processing of information. Moreover, the number of neurons and 
the number of rules with which one can realistically hope to deal in 
hardware implementation of neural networks is no limitation: the biggest 
classical expert systems make use of a few thousands rules and most expert 
systems are limited to a few hundred rules; in comparison, 10s-101~ 
connections can be a priori stored in a 1 cm 3 volume hologram, t~5~ 

9. The model we have presented here is of course very far from per- 
forming realistic information processing on a given problem; nevertheless, 
we think that such three-level schemes could be of interest in the devising 
of neural expert systems. Actually, many refinements should be added to 
improve the information processing, such as the use of different values of 
the threshold for the different neurons (which would correspond to more 
or less stringent validation criteria), dynamical changes of the threshold 
depending on the context, clamping of the neurons which correspond to 
perfectly known elementary facts, dialog with the user during a consulation 
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session (input of new information at the system's request when the system 
cannot conclude or when new information is available in some real-time 
tasks), and introduction of a finite temperature (this would smooth the 
average response function of neurons and give a fuzzier and more realistic 
behavior for input values close to the threshold). Moreover, much atten- 
tion should also be paid to the correct representation of knowledge in the 
network (choice of coherent rules with sufficient overlap in the construc- 
tion of the base of knowledge, choice of appropriate storage weights for the 
different rules, introduction of asymmetry in the connections to take 
explicit causality into account at the level of rules). 

As a final word, we shall briefly comment on some basic differences 
with the Hopfield-Little model. Our system displays a complex dynamics 
of patterns with interesting properties in the collective regime (inference), 
whereas the Hopfield model's useful regime is the individual regime where 
prototype patterns can be perfectly retrieved. This originates in the positive 
role that "spurious" attractors play in our model as opposed to the 
Hopfield network. ~32) The dynamics we have studied is basically asym- 
metric. This stems from the fact that two given patterns have apriori 
different sizes; therefore, if two patterns do overlap, the smaller one will be 
more easily excited by inference than the larger one. Note also that the 
patterns have an implicit stability threshold which depends on their size: 
small patterns cannot be stable unless the threshold U is chosen low 
enough or the pattern is stabilized by an effect of coherent overlap with 
other patterns. In addition, the introduction of the additional state 0 results 
in the suppression of most of the frustration in the current state of the 
network (that is, eliminating inner contradictions in the body of data); this 
was impossible in the Hopfield-Little model and is one of the keys to the 
strong information processing capability of our network. 

A P P E N D I X  

One can easily derive a formal expression for the dynamics of patterns 
in the thermodynamic limit; we assume that the ratio ~ = p / N  of the 
number of patterns to the number of neurons vanishes in this limit. For 
each pattern ~ we introduce the "magnetization" 

1 N 

= %iSi  

which ranges between -N~,/N and NfN. The evolution of these quantities 
is given in view of (2.2) by p equations of the form 
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My[S(I+ l ) ]  toni  1 ~ 0 i ~ ~7~;Sj(t)- g 

where U is the unscaled threshold introduced in Eq. (2.2). Taking into 
account the definition of M~(t)=M~[S(t)], we obtain in the thermo- 
dynamic limit 

The self-averaging property allows us to replace in this expression the 
average on sites by an average on the probability distribution (2.4) of the 
variables ~ ,  thus obtaining 

Adopting the integral representation of the Heaviside function 

O(x) = ~ dy dz e '~'(~ ~ 

and performing the average over the distribution of ~, we finally obtain 

l o ~, :c  

M~(t + 1 ) = ~ f _ ~  dY fo dz ei~z+v"[1- P(0)] sin[yM,(t)] 

x [ I  {P(0)+ [ l - P ( 0 ) 3  cos[yMv(t)]} 
;' :# ,u 

(A1) 

Specializing the dynamical equation (A1) to the case of a single pattern 
yields 

Np 
M,(t+ 1 ) = ~ -  [O(Mn(t)- U)--O(--Mu(t)- U)] 

and one thus recovers the stability criterion for isolated patterns of Sec- 
tion 2 (except for the term -1 /N,  which vanishes in the thermodynamic 
limit). Equation (A1) can also be used to study simple situations, such as 
the dynamics of two or three overlapping patterns. 
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